Insertion of microscopic objects through plant cell walls using laser microsurgery
نویسندگان
چکیده
A detailed protocol is presented for precisely inserting microscopic objects into the periplasmic region of plant callus cells using laser microsurgery. Ginkgo biloba and Agrobacterium rhizogenes were used as the model system for developing the optical tweezers and scalpel techniques using a single laser. We achieved better than 95% survival after plasmolyzing G. biloba cells, ablating a 2-4-μm hole through the cell wall using a pulsed UV laser beam, trapping and translating bacteria into the periplasmic region using a pulsed infrared laser beam, and then deplasmolyzing the cells. Insertion of bacteria is also described. A thermal model for temperature changes of trapped bacteria is included. Comparisons with other methods, such as a reverse-pressure gradient technique, are discussed and additional experiments on plants using laser microsurgery are suggested. Copyright 1998 John Wiley & Sons, Inc.
منابع مشابه
Assessment of Surgeon Judgment during Resection of Laryngeal Carcinoma
Carbon dioxide (CO2) laser surgery as a conservative tool plays a peculiar role in the management of head and neck cancer. Numerous patients who were candidates for transoral laryngeal microsurgery have forced us to eliminate frozen-section evaluation of surgical margins and use a magnified view of the larynx. The present study evaluated surgeon-judged negative margins with permanent microscopi...
متن کاملOptical trapping and surgery of living yeast cells using a single laser.
We present optical trapping and surgery of living yeast cells using two operational modes of a single laser. We used a focused laser beam operating in continuous-wave mode for noninvasive optical trapping and manipulation of single yeast cell. We verified that such operational mode of the laser does not cause any destructive effect on yeast cell wall. By changing the operation of the laser to f...
متن کاملThe Impact of Microfibril Orientations on the Biomechanics of Plant Cell Walls and Tissues
The microscopic structure and anisotropy of plant cell walls greatly influence the mechanical properties, morphogenesis, and growth of plant cells and tissues. The microscopic structure and properties of cell walls are determined by the orientation and mechanical properties of the cellulose microfibrils and the mechanical properties of the cell wall matrix. Viewing the shape of a plant cell as ...
متن کاملQuantitative phase evaluation of dynamic changes on cell membrane during laser microsurgery.
The ability to inject exogenous material as well as to alter subcellular structures in a minimally invasive manner using a laser microbeam has been useful for cell biologists to study the structure-function relationship in complex biological systems. We describe a quantitative phase laser microsurgery system, which takes advantage of the combination of laser microirradiation and short-coherence...
متن کاملLocalized Patch Clamping of Plasma Membrane of a Polarized Plant Cell : Laser Microsurgery of the Fucus spiralis Rhizoid Cell Wall.
We used an ultraviolet laser to rupture a small region of cell wall of a polarized Fucus spiralis rhizoid cell and gained localized access to the plasma membrane at the growing apex. Careful control of cell turgor enabled a small portion of plasma membrane-bound cytoplasm to be exposed. Gigaohm seals allowing single-channel recordings were obtained with a high success rate using this method wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biotechnology and bioengineering
دوره 60 3 شماره
صفحات -
تاریخ انتشار 1998